Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Food Chem ; 450: 139326, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615530

RESUMO

Although nanozymes sensor arrays have the potential to recognize multiple target substances simultaneously, they currently rarely identify phenolic acids in food due to limited catalytic performance and complex preparation conditions of nanozymes. Here, inspired by the structure of polyphenol oxidase, we have successfully prepared a novel gallic acid-Cu (GA-Cu) nanozyme with laccase-like activity. Due to the different catalytic efficiency of GA-Cu nanozymes towards six common phenolic acids, a three-channel colorimetric sensor array was constructed using reaction kinetics as the sensing unit to achieve high-throughput detection and identification of six phenolic acids within a concentration range from 1 to 100 µM. This method avoids the creation of numerous sensing units. Notably, the successful discrimination of six phenolic acids in samples of juice, beer, and wine has been achieved by the sensor array. Finally, aided by smartphones, a portable technique has been devised for the detection of phenolic acids.

2.
Natl Sci Rev ; 11(4): nwae045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545446

RESUMO

Organic materials with rich active sites are good candidates of high-capacity anodes in aqueous batteries, but commonly low utilization of active sites limits their capacity. Herein, two isomers, symmetric and asymmetric hexaazatribenzanthraquinone (s-HATBAQ and a-HATBAQ), with rich active sites have been synthesized in a controllable manner. It has been revealed for the first time that a sulfuric acid catalyst can facilitate the stereoselective formation of s-HATBAQ. Attributed to the reduced steric hindrance in favor of proton insertion as well as the amorphous structure conducive to electrochemical dynamics, s-HATBAQ exhibits 1.5 times larger specific capacity than a-HATBAQ. Consequently, the electrode of s-HATBAQ with 50% reduced graphene oxide (s-HATBAQ-50%rGO) delivers a record high specific capacity of 405 mAh g-1 in H2SO4 electrolyte. Moreover, the assembled MnO2//s-HATBAQ-50%rGO aqueous proton full batteries show an exceptional cycling stability at 25°C and can maintain ∼92% capacity after 1000 cycles at 0.5 A g-1 at -80°C. This work demonstrates the controllable synthesis of isomers, showcases a wide-temperature-range prototype proton battery and highlights the significance of precise molecular structure modulation in organic energy storage.

3.
Int J Biol Macromol ; 262(Pt 1): 130041, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336327

RESUMO

Metallo-ß-lactamases (MßLs) stand as significant resistant mechanism against ß-lactam antibiotics in Gram-negative bacteria. The worldwide dissemination of New Delhi metallo-ß-lactamases (NDMs) intensifies antimicrobial resistance, posing severe threats to human health due to the absence of inhibitors available in clinical therapy. L3, a flexible ß-hairpin loop flanking the active site in MßLs, has been proven to wield influence over the reaction process by assuming a crucial role in substrate recognition and intermediate stabilization. In principle, it potentially retards product release from the enzyme, consequently reducing the overall turnover rate although the details regarding this aspect remain inadequately elucidated. In this study, we crystallized NDM-1 in complex with three penicillin substrates, conducted molecular dynamics simulations, and measured the steady-state kinetic parameters. These analyses consistently unveiled substantial disparities in their interactions with loop L3. We further synthesized a penicillin V derivative with increased hydrophobicity in the R1 side chain and co-crystallized it with NDM-1. Remarkably, this compound exhibited much stronger dynamic interplay with L3 during molecular dynamics simulation, showed much lower Km and kcat values, and demonstrated moderate inhibitory capacity to NDM-1 catalyzed meropenem hydrolysis. The data presented here may provide a strategic approach for designing mechanism-based MßL inhibitors focusing on structural elements external to the enzyme's active center.


Assuntos
Penicilinas , beta-Lactamas , Humanos , Penicilinas/farmacologia , Domínio Catalítico , Hidrólise , beta-Lactamases/química , Antibacterianos/farmacologia , Antibacterianos/química
4.
Phytomedicine ; 125: 155299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301301

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) rapidly becomes the leading cause of end-stage liver disease or liver transplantation. Nowadays, there has no approved drug for NAFLD treatment. Diosgenin as the structural analogue of cholesterol attenuates hypercholesterolemia by inhibiting cholesterol metabolism, which is an important pathogenesis in NAFLD progression. However, there has been no few report concerning its effects on NAFLD so far. METHODS: Using a high-fat diet & 10% fructose-feeding mice, we evaluated the anti-NAFLD effects of diosgenin. Transcriptome sequencing, LC/MS analysis, molecular docking simulation, molecular dynamics simulations and Luci fluorescent reporter gene analysis were used to evaluate pathways related to cholesterol metabolism. RESULTS: Diosgenin treatment ameliorated hepatic dysfunction and inhibited NAFLD formation including lipid accumulation, inflammation aggregation and fibrosis formation through regulating cholesterol metabolism. For the first time, diosgenin was structurally similar to cholesterol, down-regulated expression of CYP7A1 and regulated cholesterol metabolism in the liver (p < 0.01) and further affecting bile acids like CDCA, CA and TCA in the liver and feces. Besides, diosgenin decreased expression of NPC1L1 and suppressed cholesterol transport (p < 0.05). Molecular docking and molecular dynamics further proved that diosgenin was more strongly bound to CYP7A1. Luci fluorescent reporter gene analysis revealed that diosgenin concentration-dependently inhibited the enzymes activity of CYP7A1. CONCLUSION: Our findings demonstrated that diosgenin was identified as a specific regulator of cholesterol metabolism, which pave way for the design of novel clinical therapeutic strategies.


Assuntos
Diosgenina , Hipercolesterolemia , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Diosgenina/farmacologia , Diosgenina/metabolismo , Simulação de Acoplamento Molecular , Fígado , Colesterol/metabolismo , Hipercolesterolemia/tratamento farmacológico , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos
5.
Int J Biol Macromol ; 261(Pt 2): 129878, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309394

RESUMO

In order to investigate the structural characteristics and immunomodulatory effects of Poria cocos polysaccharides, a water-soluble homogeneous polysaccharide (PCP-2) was isolated by water extraction and alcohol precipitation and further purified by Cellulose DEAE-52 and Sephacryl S-100HR column chromatography. PCP-2 is a heteropolysaccharide composed of glucose, galactose, mannose, and fucose in a molar ratio of 42.0: 35.0: 13.9: 9.1. It exhibits a narrow molecular weight distribution at 2.35 kDa with a branching degree of 37.1 %. The main chain types of PCP-2 include 1,3-ß-D-Glc and 1,6-ß-D-Glc as the backbone glucans and 1,6-α-D-Gal as the backbone heterogalactan. In vitro experiments demonstrate that PCP-2 directly stimulate RAW264.7 cell proliferation and secretion of inflammatory factors such as NO and TNF-α. In cyclophosphamide (CTX)-induced mice, it promotes the development of thymus and spleen immune organs, elevates the blood levels of IgG, IgA, IgM and CD3+CD4+ T cells, increases the intestinal villus height/ crypt depth ratio and improves gut barrier dysfunctions. These findings suggest that PCP-2 is a natural fungal polysaccharide with broad spectrum of immunoenhancing effects, which can significantly ameliorate the immunocompromised state.


Assuntos
Polissacarídeos Fúngicos , Poria , Wolfiporia , Camundongos , Animais , Wolfiporia/química , Água , Polissacarídeos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Fator de Necrose Tumoral alfa , Poria/química
6.
ACS Appl Mater Interfaces ; 16(7): 8289-8300, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329794

RESUMO

ß-Tricalcium phosphate (ß-TCP) is a bioactive material for bone regeneration, but its brittleness limits its use as a standalone scaffold. Therefore, continuous efforts are necessary to effectively integrate ß-TCP into polymers, facilitating a sturdy ion exchange for cell regulation. Herein, a novel semiembedded technique was utilized to anchor ß-TCP nanoparticles onto the surface of the elastic polymer, followed by hydrophilic modification with the polymerization of dopamine. Cell adhesion and osteogenic differentiation of mesenchymal stem cells (MSCs) under static and dynamic uniaxial cyclic stretching conditions were investigated. The results showed that the new strategy was effective in promoting cell adhesion, proliferation, and osteogenic induction by the sustained release of Ca2+ in the vicinity and creating a reasonable roughness. Specifically, released Ca2+ from ß-TCP could activate the calcium signaling pathway, which further upregulated calmodulin and calcium/calmodulin-dependent protein kinase II genes in MSCs. Meanwhile, the roughness of the membrane and the uniaxial cyclic stretching activated the PIEZO1 signaling pathway. Chemical and mechanical stimulation promotes osteogenic differentiation and increases the expression of related genes 2-8-fold. These findings demonstrated that the neoteric semiembedded structure was a promising strategy in controlling both chemical and mechanical factors of biomaterials for cell regulation.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Fosfatos de Cálcio/química , Diferenciação Celular , Tecidos Suporte
7.
Anal Chim Acta ; 1287: 342133, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182397

RESUMO

Although the research on nanozymes has attracted widespread attention in recent years, the development of highly active and multifunctional nanozymes remains a challenge. Here, a bifunctional AMP-Cu nanozyme with laccase- and catecholase-like activities was successfully prepared at room temperature with Cu2+ as the metal ion and adenosine-5'-monophosphate (AMP) as the ligand molecule. Based on the excellent catalytic performance of AMP-Cu, a three-channel colorimetric sensor array was constructed using reaction kinetics as the sensing unit to achieve high-throughput detection and identification of six common phenolic compounds at low concentrations. This strategy simplifies the construction of sensor array and demonstrates the capacity to obtain multidimensional data from a single material. Finally, with the assistance of smartphones and homemade dark boxes, a portable on-site detection method for phenolic compounds was developed. This work would contribute to the development of portable sensors and the highly efficient identification of phenolic compounds in complex samples.


Assuntos
Colorimetria , Smartphone , Catálise , Cinética , Lacase , Fenóis
8.
Free Radic Biol Med ; 210: 246-257, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042223

RESUMO

Schizochytrium sp. is an important industrial strain for commercial production of docosahexaenoic acid (DHA), which plays essential physiological roles in infant development and human health. The regulatory network for DHA biosynthesis and lipid accumulation in Schizochytrium remains poorly understood. FabR (fatty acid biosynthesis repressor), a basic leucine zipper (bZIP) transcription factor, was transcriptionally downregulated under low-nitrogen condition. Deletion of fabR gene (mutant ΔfabR) increased production of total lipids and DHA by 30.1% and 46.5%, respectively. ΔfabR displayed H2O2 stress resistance higher than that of parental strain or complementation strain CfabR. FabR bound specifically to 7-bp pseudo-palindromic sequence 5'-ATTSAAT-3' in upstream regions and repressed transcription of fatty acid biosynthesis genes (acl, fas, pfa) and antioxidant defense genes (cat, sod1, sod2, gpx). DNA binding activity of FabR was regulated in a redox-dependent manner. Under oxidative condition, FabR forms intermolecular disulfide bonds between two Cys46 residues of dimers; its DNA binding activity is thereby lost, and the transcription of its target genes is enhanced through derepression. Our findings clarify the redox-dependent mechanism that modulates FabR activity governing lipid and DHA biosynthesis and H2O2 stress response in Schizochytrium.


Assuntos
Ácidos Docosa-Hexaenoicos , Estramenópilas , Criança , Humanos , Ácidos Docosa-Hexaenoicos/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Peróxido de Hidrogênio , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Estramenópilas/metabolismo , Oxirredução , DNA/metabolismo
9.
Small ; 20(4): e2306071, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37706574

RESUMO

The lack of acid-proof high-potential cathode largely limits the development and competitiveness of proton batteries. Herein, the authors systematically investigated six dihydroxynaphthalenes (DHNs) and found that 2,6-DHN delivered the best cathode performance in proton battery with the highest redox potential (0.84 V, vs SHE) and a specific capacity of 91.6 mAh g-1 at 1 A g-1 . In situ solid-state electropolymerization of DHNs is responsible for the voltage and capacity fading of DHNs, and 2,6-DHN's excellent electrochemical performance is derived from its high polymerization energy barrier. By compounding with rGO, the 2,6-DHN/rGO electrode can maintain a specific capacity of 89 mAh g-1 even after 12 000 cycles at 5 A g-1 . When it is paired with the 2,6-dihydroxyanthraquinone (DHAQ) anode, the assembled rocking-chair all-organic proton battery exhibited a high cell voltage of 0.85 V, and excellent energy/power densities (70.8 Wh kg-1 /850 W kg-1 ). This study showcases a new-type high-potential proton-containing organic cathode and paves the way for constructing a high-voltage rocking-chair proton battery. Also, in situ solid-state electropolymerization will inspire the further study of phenol-based small-molecule electrodes.

11.
Mol Immunol ; 164: 124-133, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000115

RESUMO

Hepcidin has been identified as an important antimicrobial peptide exerting important innate immunomodulatory activities in many fish species. In the present study, reverse transcription PCR coupled with the rapid amplification of cDNA ends was used to obtain the full-length cDNA of the crescent sweetlips hepcidin gene, which is 829 bp in length and includes an 273 bp ORF encoding a peptide with 90 amino acid residues. Sequence alignment showed a typical RXKR motif and eight conserved cysteine residues in the deduced amino acid sequences. Four disulfide bonds were predicted to form between these eight cysteines, which may stabilize the hairpin structure in hepcidin molecule. Furthermore, phylogenetic analysis showed that the deduced amino acid sequences of crescent sweetlips hepcidin had high sequence homology to hepcidins from fish species of Eupercaria. In addition, the crescent sweetlips hepcidin peptide demonstrated a strong antimicrobial activity in vitro against several types of pathogenic bacteria in fish. In conclusion, the obtained results suggested that crescent sweetlips hepcidin possessed the typical structure similar to other fish hepcidins and had strong antibacterial activity, which showed great potential in the prevention of fish diseases in aquaculture.


Assuntos
Peptídeos Antimicrobianos , Hepcidinas , Animais , Hepcidinas/genética , Filogenia , DNA Complementar/genética , Peixes/genética , Clonagem Molecular
12.
NPJ Precis Oncol ; 7(1): 93, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717087

RESUMO

As a highly lethal adenocarcinoma of the hepatobiliary system, outcomes for cholangiocarcinoma (CCA) patients remain prominently poor with a 5-year survival of <10% due to the lack of effective treatment modalities. Targeted therapeutics for CCA are limited and surgical resection of CCA frequently suffers from a high recurrence rate. Here we report two effective targeted therapeutics in this preclinical study for CCA. We first performed a quantitative and unbiased screening of cancer-related antigens using comparative flow cytometry in a panel of human CCA cell lines, and identified intercellular adhesion molecule-1 (ICAM1) as a therapeutic target for CCA. After determining that ICAM1 has the ability to efficiently mediate antibody internalization, we constructed two ICAM1 antibody-drug conjugates (ADCs) by conjugating ICAM1 antibodies to different cytotoxic payloads through cleavable chemical linkers. The efficacies of two ICAM1 ADCs have been evaluated in comparison with the first-line chemodrug Gemcitabine in vitro and in vivo, and ICAM1 antibodies coupled with warhead DX-8951 derivative (DXd) or monomethyl auristatin E (MMAE) elicit a potent and consistent tumor attenuation. In summary, this study paves the road for developing a promising targeted therapeutic candidate for clinical treatment of CCA.

13.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446103

RESUMO

To examine the effects of membrane charge, the electrolyte species and glycosyl on the distribution of negatively charged radical of superoxide anion (·O2-) around the cell membrane, different phospholipid bilayer systems containing ·O2- radicals, different electrolytes and phospholipid bilayers were constructed through Charmm-GUI and Amber16. These systems were equilibrated with molecular dynamics by using Gromacs 5.0.2 to analyze the statistical behaviors of ·O2- near the lipid membrane under different conditions. It was found that in the presence of potassium rather than sodium, the negative charge of the phospholipid membrane is more likely to rarefy the superoxide anion distribution near the membrane surface. Further, the presence of glycosyl significantly reduced the density of ·O2- near the phospholipid bilayer by 78.3% compared with that of the neutral lipid membrane, which may have a significant contribution to reducing the lipid peroxidation from decreasing the ·O2- density near the membrane.


Assuntos
Simulação de Dinâmica Molecular , Superóxidos , Superóxidos/metabolismo , Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo , Bicamadas Lipídicas/metabolismo
14.
iScience ; 26(8): 107272, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520726

RESUMO

Treatment options for anaplastic thyroid cancer (ATC) and refractory papillary thyroid carcinoma (PTC) are limited and outcomes remain poor. In this study, we determined via bioinformatic expression analyses and immunohistochemistry staining that intercellular adhesion molecule-1(ICAM1) is an attractive target for ATC and PTC. We designed and engineered two ICAM1-directed antibody-drug conjugate (I1-MMAE and I1-DXd), both of which potently and selectively ablate multiple human ATC and PTC cell lines without affecting non-plastic cells in vitro. Furthermore, I1-MMAE and I1-DXd mediated a potent tumor regression in ATC and PTC xenograft models. To develop a precision medicine, we also explored magnetic resonance imaging (MRI) as a non-invasive biomarker detection method to quantitatively map ICAM1 antigen expression in heterogeneous thyroid tumors. Taken together, this study provides a strong rationale for the further development of I1-MMAE and I1-DXd as promising therapeutic candidates to treat advanced PTC and ATC.

15.
Proc Natl Acad Sci U S A ; 120(29): e2207993120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428931

RESUMO

Osteoarthritis (OA) is a joint disease featuring cartilage breakdown and chronic pain. Although age and joint trauma are prominently associated with OA occurrence, the trigger and signaling pathways propagating their pathogenic aspects are ill defined. Following long-term catabolic activity and traumatic cartilage breakdown, debris accumulates and can trigger Toll-like receptors (TLRs). Here we show that TLR2 stimulation suppressed the expression of matrix proteins and induced an inflammatory phenotype in human chondrocytes. Further, TLR2 stimulation impaired chondrocyte mitochondrial function, resulting in severely reduced adenosine triphosphate (ATP) production. RNA-sequencing analysis revealed that TLR2 stimulation upregulated nitric oxide synthase 2 (NOS2) expression and downregulated mitochondria function-associated genes. NOS inhibition partially restored the expression of these genes, and rescued mitochondrial function and ATP production. Correspondingly, Nos2-/- mice were protected from age-related OA development. Taken together, the TLR2-NOS axis promotes human chondrocyte dysfunction and murine OA development, and targeted interventions may provide therapeutic and preventive approaches in OA.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Camundongos , Animais , Condrócitos/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Osteoartrite/metabolismo , Receptores Toll-Like/metabolismo , Cartilagem Articular/metabolismo , Células Cultivadas
16.
J Nat Med ; 77(4): 735-747, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37347409

RESUMO

Dasatinib is effective in the treatment of chronic and acute myeloid leukemia, which could cause the side effect of gastrointestinal bleeding by overdose or longtime use. Ruscogenin (RUS) from the traditional Chinese medicine Ophiopogon japonicas could protect endothelial microvascular barrier function. In this study, the therapeutic effect and underlying mechanisms of RUS were investigated on intestinal barrier dysfunction induced by dasatinib. Male C57BL/6 J mice were given three doses of dasatinib (70, 140, 210 mg/kg, ig) and RUS (3, 10, 30 µg/kg, ip) to explore the effect of dasatinib on intestinal barrier and the intervention of RUS. It was proved that dasatinib could reduce intestinal blood flow, inhibit phosphorylation of EGFR family member v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4 (ErbB4)/YES-associated protein (YAP) and activation of Rho-associated coiled coil-containing protein kinase (ROCK)/phosphorylation of (myosin light chain) MLC. RUS could significantly increase intestinal blood flow, improve intestinal injury, reduce Evans blue leakage and serum content of FITC-dextran 4 kDa, and increase the expression of connexin (ZO-1, Occludin and VE-cadherin). Meanwhile, the in vitro effect of RUS (0.01, 0.1, 1 µM) on the dysfunction of the endothelial barrier was observed in dasatinib (150 nM)-pretreated HUVECs. The results showed that RUS suppressed dasatinib-induced the leakage of Evans blue, and degradation of F-actin and connexin. Furthermore, RUS could significantly increase the phosphorylation of ErbB4 at Tyr1284 site and YAP at Ser397 site, and inhibit ROCK expression and phosphorylation of MLC at Ser19 site in vivo and in vitro. In conclusion, the present research proved that RUS could suppress the side effects of dasatinib-induced intestinal barrier dysfunction by regulating ErbB4/YAP and ROCK/MLC pathways.


Assuntos
Quinases Associadas a rho , Masculino , Camundongos , Animais , Dasatinibe/farmacologia , Azul Evans , Camundongos Endogâmicos C57BL , Fosforilação , Quinases Associadas a rho/metabolismo
17.
Acta Biomater ; 167: 374-386, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37343908

RESUMO

The solid tumors are characterized with oxidative stress and metabolic reprogramming, which has been independently used for targeted tumor monotherapy. However, the potential of targeting metabolism-redox circuit in tumor therapy has long been neglected. Herein, we report a hybrid nanocarrier for concurrent targeting of glycolysis and redox balance in the current work. The nanocarriers are made of pH- and ATP-responsive zeolitic imidazolate framework (ZIF-8) as the porous core that was further coated with poloxamer 407 as the steric stabilizer. Two active cargos, glucose oxidase (GOx) and 3-bromopyruvate (3-BrPA) were co-loaded in the core of nanocarrier. GOx is well-known for its ability of producing hydrogen peroxide at the expense of glucose and oxygen. 3-BrPA can reduce oxygen and glucose consumption through glycolysis, which sensitized cancer cells to GOx-induced apoptosis. At the cellular level, the hybrid nanocarrier significantly impaired the redox balance in the liver hepatocellular carcinoma cell line (HepG2), as evidenced by the depletion of glutathione and boost of reactive oxygen species. The potency of hybrid nanocarrier in terms of suppressing HepG2 cell energy metabolism was proven by the exhaustion of ATP. As a consequence, cell viability was greatly reduced. The in vivo efficacy of hybrid nanocarriers was demonstrated in HepG2 tumor-bearing mice. The current work presents an approach of targeting metabolism-redox circuit for tumor treatment, which may enrich the available anti-tumor strategies. STATEMENT OF SIGNIFICANCE: Metabolic alterations and elevated reactive oxygen species (ROS) are two characteristics of cancer. The metabolic patterns of cancer cells are elaborately reprogrammed to enable the rapid propagation of cancer cells. However, the potential of targeting the metabolism-redox circuit in anti-tumor therapy has long been neglected. As a proof-of-concept, we report an engineered stimuli-responsive nanomedicine that can eradicate cancer cells via cooperative glycolysis inhibition and redox impairment. The current work presents an approach of targeting the metabolism-redox circuit for tumor treatment, which may enrich the available anti-tumor strategies.


Assuntos
Nanomedicina , Neoplasias , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/patologia , Oxirredução , Glicólise , Oxigênio , Trifosfato de Adenosina/metabolismo , Homeostase , Glucose , Linhagem Celular Tumoral
18.
Int J Biol Macromol ; 243: 125274, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301353

RESUMO

Helicobacter pylori is a Gram-negative microaerophilic bacterium that infects over 50 % of the world's population, making it a major risk factor for chronic gastritis, ulcer diseases of the stomach and duodenum, MALT lymphoma, and gastric cancer. The clinical consequences of H. pylori infection are closely linked with the expression of virulence factors secreted by the bacterium. One such virulence factor is high temperature requirement A (HtrA), which possesses chaperone and serine protease activity. In the host stomach, HtrA secreted from H. pylori (HpHtrA) disrupts intercellular adhesions by cleaving epithelial adhesion proteins including E-cadherin and desmoglein-2. This disruption causes intercellular junctions to open, allowing the bacterium to pass through the epithelial barrier, access the intercellular space, and colonize the gastric mucosa. HtrA proteases are well known for their structural complexity, reflected in their diverse oligomer forms and multi-tasking activities in both prokaryotes and eukaryotes. In this study, we determined crystal structures and solution conformations of HpHtrA monomer and trimer, which revealed large domain rearrangements between them. Notably, this is the first report of a monomeric structure in the HtrA family. We further found a pH-dependent dynamic trimer-to-monomer conversion and concurrent conformational changes that seem closely linked with a pH-sensing ability through the protonation of certain Asp residues. These results advance our understanding of the functional roles and the related mechanisms of this protease in bacterial infection, which may shed light on the development of HtrA-targeted therapies for H. pylori-associated diseases.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Helicobacter pylori/metabolismo , Bactérias Gram-Negativas/metabolismo , Proteólise , Peptídeo Hidrolases/metabolismo , Infecções por Helicobacter/patologia , Fatores de Virulência/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Bactérias/metabolismo
19.
J Mol Struct ; 1284: 135409, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993878

RESUMO

The outbreak of novel coronavirus disease 2019 (COVID-19), caused by the novel coronavirus (SARS-CoV-2), has had a significant impact on human health and the economic development. SARS-CoV-2 3CL protease (3CLpro) is highly conserved and plays a key role in mediating the transcription of virus replication. It is an ideal target for the design and screening of anti-coronavirus drugs. In this work, seven ß-nitrostyrene derivatives were synthesized by Henry reaction and ß-dehydration reaction, and their inhibitory effects on SARS-CoV-2 3CL protease were identified by enzyme activity inhibition assay in vitro. Among them, 4-nitro-ß-nitrostyrene (compound a) showed the lowest IC50 values of 0.7297 µM. To investigate the key groups that determine the activity of ß-nitrostyrene derivatives and their interaction mode with the receptor, the molecular docking using the CDOCKER protocol in Discovery Studio 2016 was performed. The results showed that the hydrogen bonds between ß-NO2 and receptor GLY-143 and the π-π stacking between the aryl ring of the ligand and the imidazole ring of receptor HIS-41 significantly contributed to the ligand activity. Furthermore, the ligand-receptor absolute binding Gibbs free energies were calculated using the Binding Affinity Tool (BAT.py) to verify its correlation with the activity of ß-nitrostyrene 3CLpro inhibitors as a scoring function. The higher correlation(r2=0.6) indicates that the absolute binding Gibbs free energy based on molecular dynamics can be used to predict the activity of new ß-nitrostyrene 3CLpro inhibitors. These results provide valuable insights for the functional group-based design, structure optimization and the discovery of high accuracy activity prediction means of anti-COVID-19 lead compounds.

20.
J Antimicrob Chemother ; 78(4): 1117-1124, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36883515

RESUMO

OBJECTIVES: To elucidate the role of a novel carbapenem-hydrolysing class D ß-lactamase (RAD-1) from Riemerella anatipestifer. METHODS: We applied WGS and bioinformatic analysis to screen putative ß-lactamase genes in R. anatipestifer SCVM0004. A putative class D ß-lactamase gene was cloned into pET24a and transferred into Escherichia coli BL21 (DE3) for antibiotic susceptibility determination and protein purification. Meanwhile, the purified native protein was used to determine the enzymatic activities. RESULTS: A class D ß-lactamase, RAD-1, was identified in the genome of R. anatipestifer SCVM0004. It was distinct from all characterized class D ß-lactamases (≤42% amino acid sequence identity). Searching in GenBank showed that blaRAD-1 was widely disseminated among R. anatipestifer. Genomic environment analysis indicated that the chromosomal structures of blaRAD-1-located regions were relatively conserved. Expression of RAD-1 in E. coli results in elevated MICs for various ß-lactam antibiotics, including penicillins, extended-spectrum cephalosporins, a monobactam and carbapenems. Moreover, kinetic analysis of purified RAD-1 revealed: (i) high-level activity against penicillins; (ii) highest affinity for carbapenems; (iii) moderate hydrolysis of extended-spectrum cephalosporins and a monobactam; and (iv) no activity for oxacillin and cefoxitin. CONCLUSIONS: This study identified a novel chromosomally located class D carbapenemase RAD-1 (Bush-Jacoby functional group 2def) in R. anatipestifer SCVM0004. Moreover, bioinformatic analysis confirmed that the RAD-1 was widely prevalent and conserved in R. anatipestifer.


Assuntos
Carbapenêmicos , Escherichia coli , Carbapenêmicos/farmacologia , Carbapenêmicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , beta-Lactamases/metabolismo , Cefalosporinas , Monobactamas , Penicilinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...